Porallel Computer Modeis

in six synchronized vector instructions over
64-component vector data and both driven
by the same-speed clock. Calculate the total
execution time on the SIMD machine, ignoring
instruction broadcast and other delays.

(c) What is the speedup gain of the SIMD
computer over the SISD computer?

Problem 1.9 Prove that the best parallel algo-
rithm written for an n-processor EREW PRAM
model can be no more than O(log n) times slower
than any algorithm for a CRCW model of PRAM
having the same number of processors.

Problem 1.10 Consider the mukiplication of two
n-bit binary integers using a 1.2-pm CMOS multi-
plier chip. Prove the lower bound AT > kn®, where A
is the chip area, T is the execution time, n is the word
length, and k is 2 technology-dependent constant.

Problem 1.11 Compare the PRAM models with
physical models of real parallel computers in each of
the following categories:
() Which PRAM variant can best model SIMD
machines and how?
(b) Repeat the question in part (a) for shared-
memory MIMD machines.

Problem 1.12 Answer the following questions
refated to the architectural development tracks pre-
sented in Section 1.5:

{a) For the shared-memory track (Fig. 1.17), ex-
plain the trend in physical memory organi-
2ations from the earlier system {C.mmp) to
more recent systems (such as Dash, etc.),

(b) Distinguish between medium-grain and fine-
grain multicomputers in their architectures
and programming requirements.

(c) Distinguish between register-to-register
and memory-to-memory architectures
for building conventional multivector
supercomputers,

(d) Distinguish between single-threaded and
multithreaded processor architectures.

- 43

Problem 1.13 Design an algorithm to find the
maximum of n numbers in Olog n) time on an
EREW-PRAM model. Assume that initially each loca-
tion holds one input value. Explain how you would
make the algorithm processor time optimal,

Problem 1.14 Develop two algorithms for fast
multiplication of two n x n matrices with a system
of p processors, where 1 < p= n3llog n. Choose
an appropriate PRAM machine model to prove that
the matrix multiplication can be done in T = O(nSIp)
time.
(a) ProvethatT= O(nl) ifp = n.The corresponding
algorithm must be shown, similar to that in

Example 1.5.

(b) Show the parallel algorithm with T = O ifp
-2
=n.

Problem 1.15 Match each of the following eight
computer systems: KSR-1, RP3, Paragon, Dash, CM-2,
VPP500, EM-5, and Tera, with one of the best de-
scriptions listed below. The mapping is 2 one-to-one
correspondence,

(a) A massively parallel system built with
multiple-context processors and a 3-D torus
architecture,

(b) A data-parallel computer built with bit-slice
PEs interconnected by a hypercube/mesh
network.

(c) A ring-connected muiltiprocessor using a
cache-only memory architecture.

(d) An experimental multiprocessor built with a
dynamic dataflow architecture.

(e) A crossbar-connected multiprocessor built
with distributed processor/memory nodes
forming a single address space.

() A multicomputer built with commercial

microprocessors with multiple address
spaces. :
(8) A scalable multiprocessor built with

distributed shared memory and coherent
caches.

(h) An MIMD computer built with a large
multistage switching network.

Program and Network
Properties

This chapter covers fundamental properties of program behavior and introduces major classes of
interconnection networks. We begin with a study of computational grantlarity, conditions for program
partitioning, matching software with hardware, program flow mechanisms, and compilation support for
parallelism. Interconnection architectures introduced include static dwmcnetwoﬂcsNetwork
complexity; communication bandwidth, and data-routing cipabilicies are discussed: EE

The exploitation of parallelism has created a new dimension in computer science. In order to
move parallel processing into the mainstream of computing, H.T. Kung (1991) has identified
the need to make significant progress in three key areas: computation models for parallel computing,
interprocessor communication in parallel architectures, and system integration for incorporating parallel
systems into general computing environments.

A theoretical treatment of parallelism is thus needed to build a basis for the above challenges. In practice,
paralilism appears in various forms in a computing environment. All forms can be attributed to levels of
parallelism, computational granularity, time and space complexities, communication latencies, scheduling
policies, and load balancing. Very often, tradeoffs exist among time, space, performance, and cost factors,

2.1.1 Data and Resource Dependences

The ability to execute several program segments in paratlel requires each segment to be independent of the
other segments. The independence comes in various forms as defined below separately. For simplicity, to
illustrate the idea, we consider the dependence relations among instructions in a program. In general, each
code segment may contain one or more statements. :

We use a dependence graph to describe the relations. The nodes of a dependence graph correspond to the
program statements (instructions), and the directed edges with different labels show the ordered relations
among the statements. The analysis of dependence graphs shows where opportunity exists for parailelization
and vectorization.

" Data Dependence The ordering rclationship between statements is indicated by the data dependence.
Five types of data dependence are defined below:

Program and Network Properties s

(I

(2}

3)
S

(5)

0

Flow dependence: A statement S2 is Sflow-dependent on statement S1 if an execution path exists from
S1 1o 52 and if at least one output (variables assigned) of S1 feeds in as input (operands to be used) to
52. Flow dependence is denoted as S1 —» S2.

Antidependence: Statement S2 is antidependent on statement S1 if S2 follows S1 in program order and
if the output of S2 overlaps the input to S1. A direct arrow crossed with a bar as in 81 +> 52 dicates
antidependence from S1 to 82.

Qutput dependence: Two statements are output-dependent if they produce (write) the same output
variable. 81 &> S2 indicates output dependence from S1 to S2.

/0 dependence: Read and write are 1/0 statements. /0 dependence occurs not because the same
vartable is involved but because the same file is referenced by both I/0 statements.

Unknown dependence: The dependence relation between two statements cannot be determined in the
following situations:

* The subscript of a variable is itself subscribed.
* The subscript does not contain the toop index variable.

* A variable appears more than once with subscripts having different coefficients of the loop
variable,
* The subscript is nonlinear in the loop index variable.

When one or more of these conditions exist, a conservative assumption is to claim unknown dependence
among the statements involved.

Example 2.1 Data dependence in programs -

Consider the following code fragment of four instructions:

S1: Load R1, A /R1 & Memory(A)/
§2: Add R2, R1 /R2 « (R1)+ (R2)/
S3: Move R1, R3 /R1 & (R3Y/

54 Store B, R1 {Memory(B) (R1)Y/

As illustrated in Fig. 2.1a, S2 is flow-dependent on $1 because the variable A is passed via the register
R1. 83 is antidependent on S2 because of potential conflicts in register content in R1. $3 is output-dependent
on S1 because they both modify the same register R1, Other data dependence relationships can be similarly
revealed on a pairwise basis. Note that dependence is a partial ordering relation; that is, the members of not
every pair of statements are related. For example, the statements S2 and S4 in the above program are totally
independent.

Next, we consider a code fragment involving 1/0 operations:

St Read (4), A() /Read array A from file 4/
§2: Process ’ /Process data/
S3: Write (4), B(I) /Write array B into file 4/

54: Close (4) iClose file 4/

T Advanced Computer Architecture

As shown in Fig. 2.1b, the read/write statements, S1 and S3, are 1/0-dependent on each other because
they both access the same file. The above data dependence relations should not be arbitrarily violated during
program execution. Otherwise, erroncous results may be produced with changed program order. The order in
which statements are executed in a sequential program is well defined and repetitive runs produce identical
results. On a multiprocessor system, the program order may or may not be preserved, depending on the
memory model used. Determinism yielding predictable results can be controlled by a programmer as well as
by constrained modification of writable data in a shared memory.

{a) Dependence graph (b) /O dependence caused by
accessing the same file by
the read™and wrile state-
ments

Fig.21 Dat and /O dependences in the program of Example 2.1

Control Dependence This refers to the situation where the order of execution of.statements cannot be
determined before run time, For example, conditional statements wilt not be resolved unst\m_'un time. Different
paths taken after a conditional branch may introduce or eliminate data dependence alfu\mg instructions,
Dependence may also exist between operations performed in successive iterations of a lodping procedure.
In the following, we show one loop example with and another without control-dependent iterations. The
successive iterations of the following loop are control-independent.

Do 20i=1,N
AN =C()
IF (A{D) LT.OYA(D =1
20 Continue

The following loop has control-dependent iterations:

Do 10I=1,N
IF(A(I-1) . EQ.) A(I)=0
10 Continue

Control dependence often prohibits parallelism from being exploited. Compiler techniques or hardware

branch prediction techniques are needed to get around the control dependence in order to exploit more
parallelism.

Resource Dependence This is different from data or control dependence, which demands the independence
of the work to be done. Resource dependence is concerned with the conflicts in using shared resources,

Program and Network Properties " 4

such as integer units, floating-point units, registers, and memory areas, among parailel events. When the
conflicting resource is an ALU, we call it ALU dependence.

Ifthe conflicts involve workplace storage, we call it storage dependence. In the case of storage dependence,
each task must work on independent storage locations or use protected access (such as locks or monitors to
be described in Chapter 11) to shared writable data.

The detection of paralchlism in programs requires a check of the various dependence refations.

Bernstein’s Conditions In 1966, Bernstein revealed a set of conditions based on which two processes can
execute in parallel. A process is a software entity corresponding to the abstraction of a program fragment
defined at various processing levels. We define the input set I; of a process P; as the set of all input variables
needed to execute the process.

Similarly, the output set O; consists of all output variables generated after execution of the process P;.
Input variables are essentially operands which can be fetched from memory or registers, and output variables
are the results to be stored in working registers or memory locations.

Now, consider two processes P; and P, with their input sets /, and I, and output sets O, and O-, respectively.
These two processes can execute in parallel and are denoted P, || P, if they are independent and therefore
create deterministic results.

Formally, these conditions are stated as follows:

Lo, =¢
LNO=¢ 2.1)
ON0,=9¢

These three conditions are known as Bernstein’s conditions. The input set /; is also called the read set or
the domain of P; by other authors. Similarly, the output set O; has been called the write set or the range of a
process P;. In terms of data dependences, Bernstein's conditions simply imply that two processes can execute
in parallel if they are flow-independent, antiindependent, and output-independent.

The parallel execution of such two processes produces the same results regardless of whether they are
executed sequentially in any order or in parallel. This is because the output of one process will not be used
as input to the other process. Furthermore, the two processes do not modify (write) the same set of variables,
either in memory or in the registers,

In general, a set of processes, Py, P,, ..., Py, can execute in parallel if Bernstein’s conditions are satisfied
on a pairwise basis; that is, P1|| P, || P; | ... || Py if and only if P, || P, for all i # j. This is exemplified by the
following program illustrated in Fig. 2.2.

l’) e
& Example 2.2 Detection of parallelism in a program
v’ using Bernstein’s conditions

Consider the simple case in which each process is a single HLL statement. We want to detect the parallelism
embedded in the following five statements labeled P, P;, P;, P,, and Ps in program order.

48 T Advanced Computer Architecture

B.C=DxE
B:M=G+C
B:4=B+C (2.2)
PC=LtM
P F=G+E

Assummne that each statement requires one step to execute. No pipelining is considered here. The dependence
graph shown in Fig. 2.2a demonstrates flow dependence as well as resource dependence. In sequential
execution, five steps are needed (Fig. 2.2b).

{a} Adependence graph showing both data dependence (solid arrows)
and resource dependence (dashed armows)

Time
¥
(b) Sequential execution in five steps, {c) Parallel execution in three steps,
assuming one step per statement assuming two adders are available
{no pipelining) per step

Fig.2.2 Dmmonofpamtldkmmdnpmgmof&le 22

if two adders are available simultaneously, the paraliel execution requires only three steps as shown in
Fig. 2.2¢. Pairwise, there are 10 pairs of statements to check against Bernstein’s conditions. Only 5 pairs, P,
i| Ps, Py || Ps, Py || Ps, Ps || Py, and Py || Ps, can execute in parallel as revealed in Fig. 2.2a if there are no

Progrom and Network Properties _— 40

resource conflicts. Collectively, only P, || P; {| Ps is possibie (Fig. 2.2¢) because P || P3, P3 || Ps, and Ps ||
P, are all possible.

In general, the parallelism relation || is commutative; i.e., P; || P; implies P; || £;. But the relation is not
transitive; i.e., P; | P; and P; {| Py do not necessarily guarantee P, | P;. For example, we have P, || Ps and Ps
| Py, but Py } P, where }f means P and P, cannot execute in parallel. In other words, the order in which P,
and P, are executed will make a difference in the computational results.

Therefore, || is not an equivalence relation. However, P,-'II P; || Py implies associativity; ie. (P; || P;) || Px=
P; || (;|| Py), since the order in which the parallel executable processes are executed should not make any
difference in the output sets. It should be noted that the condition J; ™~ I; # ¢ does not prevent parallelism
between P; and P;.

Violations of any one or more of the three conditions in Eq. 2.1 prohibits parallelism between two processes.
In general, violation of any one or more of the 3a(n — 1)/2 Bernstein’s conditions among n processes prohibits
paralletism collectively or partially.

In general, data dependence, control dependence, and resource dependence all prevent parallelism from
being exploitable.

The statement-level dependence can be generalized to higher levels, such as code segment, subroutine,
process, task, and program levels. The dependence of two higher level objects can be inferred from the
dependence of statements in the corresponding objects. The goals of analyzing the data dependence,
contro! dependence, and resource dependence in a code are to identify opportunities for parallelization or
vectorization. Hardware techniques for detecting instruction-level parallelism in a running program are
described in Chapter 12.

Very often program restructuring or code transformations need to be performed before such opportunities
can be revealed. The dependence relations are also used in instruction issue and pipeline scheduling operations
described in Chapter 6 and 12.

2.1.2 Hardware and Software Parallelism

For implementation of parallelism, we need special hardware and software support. In this section, we address
these support issues. We first distinguish between hardware and software paraltelism. The mismatch problem
between hardware and software is discussed. Then we describe the fundamental concept of compilation
support needed 1o close the gap between hardware and software.

Details of special hardware functions and software support for parallelism will be treated in the remaining
chapters. The key idea being conveyed is that parallelism cannot be achicved free. Besides theoretical
conditioning, joint efforts between hardware designers and software programmers are needed to exploit
parallefism in upgrading computer performance.

Hardware Parallelism This refers to the type of parallelism defined by the machine architecture and
hardware multiplicity. Hardware parallelism is often a function of cost and performance tradeoffs. It displays
the resource utilization patterns of simultaneously executable operations. It can also indicate the peak
performance of the processor resources.

One way to characterize the parallelism in a processor is by the number of instruction issues per machine
cycle. If a processor issues k instructions per machine cycle, then it is called a k-issue processor.

50 "N Advanced Computer Architecture

A conventional pipelined processor takes one machine cycle to issue a single instruction. These types of
processors are called one-issue machines, with a single instruction pipeline in the processor. In a modemn
processor, two or mote instructions can be issued per machine cycle.

For example, the Intel 1960CA was a three-issue processor with one arithmetic, one memory access, and
one branch instruction issued per cycle. The IBM RISC/System 6000 is a four-issue processor capable of
issuing one arithmetic, one memory access, one floating-point, and one branch operation per cycle.

. Software Parallelism This type of parallelism is revealed in the program profile or in the program flow
graph. Software paralielism is a function of algorithm, programming style, and program design. The program
flow graph displays the patterns of simultaneously executable operations.

L)
& Example 2.3 Mismatch between software parallelism and
hardware parallelism (Wen-Mei Hwu, 1991)

Consider the example program graph in Fig. 2.3a. There are eight instructions (four loads and four arithmetic
operations) to be executed in three consecutive machine cycles. Four load operations are performed in the
first cycle, followed by two multiply operations in the second cycle and two add/subtract operations in the
third cycle. Therefore, the parallelism varies from 4 to 2 in three cycles. The average software parallelism is
equal to 8/3 = 2.67 instructions per cycle in this example program. :

Now consider execution of the same program by a two-issue processor which can execute one memory
access (load or write) and one arithmetic (add, subtract, multiply, etc.) operation simultaneously. With this
hardware restriction, the program must execute in seven machine cycles as shown in Fig, 2.3b. Therefore,
the hardware parallelism displays an average value of 8/7 = 1.14 instructions executed per cycle. This
demonstrates a mismatch between the software parallelism and the hardware parallelism.

eyt @y @ & G
Cycle2 (X (X2)

<

Cycle 3 ° (-

A B

L;: Load operation
X; : Multiply operation

(b} Hardware parailelism

{a) Software paralielism

Fig.2.3 Executing an example program by a two-lsstie superscatar processor

Program and Network Properties - 51

Let us try to match the software parallelism shown in Fig. 2.3a in a hardware platform of a dual-processor
system, where single-issue processors are used. The achievable hardware parallelism is shown in Fig. 2.4,
where L/S stands for /oad/store operations. Note that six processor cycles are needed to execute the 12
instructions by two processors. §; and S, are two inserted store operations, and /5 and /; are two inserted
load operations. These added instructions are needed for interprocessor communication through the shared
Memory.

Cycle 1
Cycle 2
L/S: L oad/Store operation
X: Multiply operation
Cycle 3 +/— Add/Subtract operation
Cycle 4
Added
ingtructions
for IPC
Cycle 5
Cycle 6
Fig. 2.4 Duakprocessor execution of the program in Fig 2.3

Of the many types of software parallelism, two are most frequently cited as important to paraliel
programming: The first is control parallelism, which allows two or more operations to be performed
simultancously. The second type has been called data parallelism, in which almost the same operation is
performed over many data elements by many processors simultaneously.

Control paralielism, appearing in the form of pipelining or multiple functional units, is limited by the
pipeline length and by the multiplicity of functional units. Both pipelining and functional paralielism are
handled by the hardware; programmers need take no special actions to invoke them.

Data parallelism offers the highest potential for concurrency. It is practiced in both SIMD and MIMD modes
on MPP systems. Data parallel code is easier to write and to debug than control parallel code. Synchronization
in SIMD data parallelism is handled by the hardware. Data parallelism exploits parallelism in proportion to the
quantity of data involved. Thus data parallel computations appeal to scaled problems, in which the performance
of an MPP system does not drop sharply with the possibly small sequential fraction in the program.

To solve the mismatch problem between software parallelism and hardware parallelism, one approach is
to develop compilation support, and the other is through hardware redesign for more efficient exploitation of
parallelism. These two approaches must cooperate with each other to produce the best result.

52 "l Advanced Computer Architecture

Hardware processors can be better designed to exploit parallelism by an optimizing compiler. Pioneer work
in processor technology with this objective was seen in the 1IBM 801, Stanford MIPS, and Berkeley RISC.
Such processors use a large register file and sustained instruction pipelining to execute nearly one instruction
per cycle. The large register file supports fast access to temporary values generated by an optimizing compiler.
The registers are exploited by the code optimizer and global register allocator in such a compiler.

The instruction scheduler exploits the pipeline hardware by filling branch and load delay slots. In
superscalar processors, hardware and software branch prediction, multiple instruction issue, speculative
execution, high bandwidth instruction cache, and support for dynamic scheduling are needed to facilitate the
detection of parallelism opportunities. Further discussion on these topics can be found in Chapters 6 and 12.

2.1.3 The Role of Compilers

Compiler techniques are used to exploit hardware features to improve performance. The pioneer work on the
IBM PL.8 and Stanford MIPS compilers aimed for this goal. Other early optimizing compilers for exploiting
parallelism included the CDC STACKLIB, Cray CFT, Illinois Parafrase, Rice PFC, Yale Bulldog, and Illinois
IMPACT.

In Chapter 10, we will study loop transformation, software pipelining, and features developed in existing
optimizing compilers for supporting parallelism. Interaction between compiler and architecture design is a
necessity in modern computer development. Conventional scalar processors issue at most one instruction
per cycle and provide a few registers. This may cause excessive spilling of temporary results from the
available registers. Therefore, more software paralielism may not improve performance in conventional
scalar processors. '

There exists a vicious cycle of limited hardware support and the use of a naive compiler. To break the
cycle, ideally one must design the compiler and the hardware jointly at the same time. Interaction between
the two can lead to a better solution to the mismatch problem between software and hardware parallelism.

The general guideline is to increase the flexibility in hardware parallelism and to exploit software
parallelism in control-intensive programs. Hardware and software design tradeofTs also exist in terms of cost,
compiexity, expandability, compatibility, and performance. Compiling for multiprocessors is much more
challenging than for uniprocessors. Both granularity and communication fatency play important roles in the
code optimization and scheduling process.

This section introduces the basic definitions of computational granularity or level of
parallelism in programs. Communication latency and scheduling issues are illustrated
with programming examples.

2.2.1 Grain Sizes and Latency

Grain size or granularity is a measure of the amount of computation involved in a software process. The
simplest measure is to count the number of instructions in a grain (program segment). Grain size determines
the basic program segment chosen for parallel processing. Grain sizes are commonly described as fine,
medium, or coarse, depending on the processing levels involved.

Program and Network Properties m 532

Latency is a time measure of the communication overhead incurred between machine subsystems. For
example, the memory latency is the time required by a processor to access the memory, The time required for
two processes to synchronize with each other is called the synchronization {atency. Computational granularity
and communication latency are closely related, as we shall see below.

Parallelism has been exploited at various processing levels. As illustrated in F ig. 2.5, five levels of
program execution represent different computational grain sizes and changing communication and control
requirements. The lower the level, the finer the granularity of the software processes.

In general, the execution of a program may involve a combination of these levels. The actual combination
depends on the application, formulation, algorithm, language, program, compilation support, and hardware
characteristics. We characterize below the parallelism levels and review their implementation issues from the
viewpoints of a programmer and of a compiler writer.

Instruction Level At the lowest level, a typical grain contains less than 20 instructions, called Sfine grain
in Fig. 2.5. Depending on individual programs, fine-grain parallelism at this level may range from two to
thousands. Butler et al. (1991) has shown that single-instruction-stream parallelism is greater than two. Walt
{1991) finds that the average parallelism at instruction level is around five, rarely exceeding seven, in an
ordinary program. For scientific applications, Kumar (1988) has measured the average parallelism in the
range of 500 to 3000 Fortran statements executing concurrently in an idealized environment.

Level 5 Jobs or programs
Coarse grain
Subprograms, job
Level 4 steps or related
parts of a program
Medium grain
Increasing
inati Procedures,)
communication Level 3| subroutines, tasks, Higher degree
demand and : of parallelism
scheduling or coroutines J P
overhead
N ve |)
anrecursive loops or
Level 2 unfolded iterations
? Fine grain
instructions or
v Level 1 statements \
J
Fig. 2.5 Levels of parallelism in pfogram execution on modern computers (Reprinted from Hwang, Proc. IEEE,
October 1987)

The exploitation of fine-grain parallelism can be assisted by an optimizing compiler which should be able
to automatically detect parallelism and translate the source code to a parallel form which can be recognized
by the run-time system. Instruction-level parallelism can be detected and exploited within the processors, as
we shall see in Chapter 12.

54 . A Advanced Computer Architectuire

Loop Level This corresponds to the itérative loob di)erations. A typical loop contains less than 500
instructions. Some loop operations, if independent in successive iterations, can be vectorized for pipelined
execution or for lock-step execution on SIMD machines. Some loop operations can be self-scheduled for
parallel execution on MIMD machines.

Loop-level parallelism is often the most optimized program construct to execute on a parallel or vector
computer. However, recursive loops are rather difficult to parallelize. Vector processing is mostly exploited
at the loop level (Jevel 2 in Fig. 2.5) by a vectorizing compiler. The loop level may also be considered a fine
grain of computation. '

Procedure Level This level corresponds to medium-grain parailelism at the task, procedural, subroutine,
and coroutine levels. A typical grain at this level contains less than 2000 instructions. Detection of parallelism
at this level is much more difficult than at the finer-grain levels. Interprocedural dependence analysis is much
more involved and history-sensitive.

Communication requirement is often less compared with that required in MIMD execution mode. SPMD
execution mode is a special case at this level. Multitasking also belongs in this category. Significant efforts
by programmers may be needed to restructure a program at this level, and some compiler assistance is also
needed.

Subprogram Level This corresponds to the level of job steps and related subprograms. The grain size may
typically contain tens or hundreds of thousands of instructions. Job steps can overlap across different jobs.
Subprograms can be scheduled for different processors in SPMD or MPMD mode, often on message-passing
multicomputers.

Multiprogramming on a uniprocessor or on a multiprocessor is conducted at this level. Traditionally,
parallelism at this level has been exploited by algorithm designers or programmers, rather than by compilers.
Good compilers for exploiting medium- or coarse-grain parallelism require suitably designed parallel
programming languages.

Job (Program) Level This corresponds to the parallel execution of essentially independent jobs (programs)
on a parallel computer. The grain size can be as high as millions of instructions in a single program. For
supercomputers with a small number of very powerful processors, such coarse-grain paralielism is practical.
Job-leve! parallelism is handled by the program loader and by the operating system in general. Time-sharing
or space-sharing multiprocessors explore this level of parallelism. In fact, both time and space sharing are
extensions of multiprogramming.

To summarize, fine-grain parallelism is often exploited at instruction or loop levels, preferably assisted by
a parallelizing or vectorizing compiler. Medium-grain parallelism at the task or job step demands significant
roles for the programmer as well as compilers. Coarse-grain parallelism at the program level relies heavily
on an effective OS and on the efficiency of the algorithm used. Shared-variable communication is often used
to suppott fine-grain and medium-grain computations.

Message-passing muiticomputers have been used for medium- and coarse-grain computations. Massive
paralielism is often explored at the fine-grain level, such as data parallelism on SIMD or MIMD computers.

Communication Latency By balancing granularity and latency, one can achieve better performance of
a computer system. Various latencies are atiributed to machine architecture, implementing technology, and
communication patterns involved. The architecture and technology affect the design choices for latency
tolerance between subsystems. In fact, letency imposes a limiting factor on the scalability of the machine

Program and Network Properties .. 55

A\
<

size. For example, over the years memory lal

latency hiding or tolerating techniques will be s

e ith respect to processor cycle time. Various
pters 9 and 12.

The latency incurred with interprocessor communication is another important parameter for a system
designer to minimize. Besides signal delays in the data path, IPC latency is also affected by the communication
patterns involved. In general, # tasks communicating with each other may require n(n — 1)/2 communication
links among them. Thus the complexity grows quadratically. This leads to a communication bound which
limits the number of processors allowed in a large computer system.

Communication patterns are determined by the algorithms used as well as by the architectural support
provided. Frequently encountered patterns include permutations and broadcast, muiticast, and conference
(many-to-many) communications. The communication demand may limit the granularity or parallelism. Very
often tradeofTs do exist between the two.

The communication issue thus involves the reduction of latency or complexity, the prevention of deadlock,
minimizing blogking in communication patterns, and the tradeoff between parallelism and communication
overhead. We will study techniques that minimize communication latency, prevent deadlock, and optimize
grain size in latter chapters of the book.

2.2.2 Grain Packing and Scheduling

Two fundamental questions to ask in parallel programming are: (i) How can we partition a program into
parallel branches, program modules, microtasks, or grains to yield the shortest possible execution time? and
(i1) What is the optimal size of concurrent grains in a computation?

This grain-size problem demands determination of both the number and the size of grains (or microtasks)
in a parallel program. Of course, the solution is both problem-dependent and machine-dependent. The goal is
to produce a short schedule for fast execution of subdivided program modules.

There exists a tradeoff between parallelism and scheduling/synchronization overhead. The time complexity
involves both computation and communication overheads. The program partitioning involves the algorithm
designer, programmer, compiler, operating system support, etc. We describe below a grain packing approach
introduced by Kruatrachue and Lewis (1988) for parallel programming applications.

b

The basic concept of program partitioning is introduced below. In Fig. 2.6, we show an example program
graph in two different grain sizes. A program graph shows the structure of a program. It is very similar
to the dependence graph introduced in Section 2.1.1. Each node in the program graph corresponds to a
computational unit in the program. The grain size is measured by the number of basic machine cycles
(including both processor and memory cycles) needed to execute all the operations within the node.

We denote each node in Fig. 2.6 by a pair (#, 5), where n is the node name (id} and s is the grain size of the
node. Thus grain size reflects the number of computations involved in a program segment. Fine-grain nodes
have a smaller grain size, and coarse-grain nodes have a larger grain size.

Example 2.4 Program graph before and after grain packing
(Kruatrachue and Lewis, 1988) e

56 "W, Advanced Computer Architecture
The edge label (v, d) between two end nodes specifies the output variable v from the source node or the
input variable to the destination node, and the communication delay d between them. This delay includes all
the path delays and memory latency involved.
There are 17 nodes in the fine-grain program graph (Fig. 2.6a) and 5 in the coarse-grain program graph
(Fig. 2.6b). The coarse-grain node is obtained by combining (grouping) multiple fine-grain nodes. The fine
grain corresponds to the following program:

v

Legends;
(n,8) = (node, grain size)
{x.} = (input, delay)

9.0 {u.k) = (output, delay) ul

v.h

] {b) Coarse-grain program graph
(a) Fine-grain prograrn graph before packing after packing

Fig. 2.6 A program graph before and after grain paclang tnExamp%eZA (Mod;ﬁadfroml(ruatrachueand Lewis,
{EEE Software, Jan. 1988)

Vara, b,c,d e fg hij kil mnopq

Begin

l. a=1 10. j =exf
2. b=2 1. k=dxf
3. ¢=3 12. I =jxk
4 d=4 13. m=4x1
5. e=5 14. n:=3xm
€ f=6 15. o :==nxi
7. g=axbh i6. p =oxh
8. hi=cxd 17. g =pxg
9 i=dx

End

Program and Network Properties - ;7

Nodes 1, 2, 3, 4, 5, and 6 are memory reference (data fetch) operations. Each takes one cycle to address
and six cycles to fetch from memory. All remaining nodes (7 to 17) are CPU operations, each requiring two
cycles to complete. After packing, the coarse-grain nodes have larger grain sizes ranging from 4o 8 as
shown.

The node (A, 8) in Fig. 2.6b is obtained by combining the nodes (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), 6, 1),
and (11, 2 in Fig. 2.6a. The grain size, 8, of node A is the summation of all grain sizes (1 +1+1+ 1+1+
1 + 2 = &) being combined.

The idea of grain packing is to apply fine grain first in order to achieve a higher degree of parallelism.
Then one combines (packs) multiple fine-grain nodes into a coarsegrain node if it can eliminate unnecessary
communications delays or reduce the overall scheduling overhead.

Usually, all fine-grain operations within a single coarse-grain node are assigned to the same processor for
execution. Fine-grain partition of a program often demands more interprocessor communication than that
required in a coarse-grain partition. Thus grain packing offers a tradeoff between parallelism and scheduling/
communication overhead.

Internal delays among fine-grain operations within the same coarse-grain node are negligible because the
communication delay is contributed mainly by interprocessor delays rather than by delays within the same
processor. The choice of the optimal grain size is meant to achieve the shortest schedule for the nodes on a
parallel computer system.

- Or& 0= 0 0
T 9 E n
\\\ 2 N A
X N
sk r
11 10 10
10 3
12 *% T
v ™ 14 M I
16 12 B
Time 18 _%w 19 § \§ RS
20— s
21FT al X
22 % :i 22 P pp R
2T Z; 14 D
28 L ?\w\ 28 e !
0] \
32 § a2
35 16 E
37 38—
“ 0}
42—
{a} Fine grain {Fig. 2.6a) (b) Coarse grain (Fig. 2.6b)

Fig. 2.7 Scheduling of the fine-grain and coarse-grain pmgmms (arrows: idle time; shaded areas: c&nmnkaﬁon
delays) . >)

58 il Advanced Computer Architecture

With respect to the fine-grain versus coarse-grain program graphs in Fig. 2.6, two multiprocessor schedules
are shown in Fig. 2.7. The fine-grain schedule is longer (42 time units) because more communication delays
were included as shown by the shaded area. The coarse-grain schedule is shorter (38 time units) because
communication delays among nodes 12, 13, and 14 within the same node D (and also the delays among 135,
16, and 17 within the node E) are eliminated after grain packing.

2.2.3 Static Multiprocessor Scheduling

Grain packing may not always produce a shorter schedule. In general, dynamic multiprocessor scheduling
is an NP-hard problem. Very often heuristics are used to yield suboptimal solutions. We introduce below the
basic concepts behind multiprocessor scheduling using static schemes.

Node Duplication In order to eliminate the idle time and to further reduce the communication delays
among processors, one can duplicate some of the nodes in more than one processor.

Figure 2.8a shows a schedule without duplicating any of the five nodes. This schedule contains idle time
as well as long interprocessor delays (8 units) between P1 and P2. In Fig. 2.8b, node A is duplicated into A’
and assigned to P2 besides retaining the original copy A in P1. Similarly, a duplicated node C’ is copied into
P1 besides the original node C in P2. The new schedule shown in Fig. 2.8b is aimost 50% shorter than that
in Fig. 2.8a. The reduction in schedule time is caused by elimination of the (a, 8) and (c, 8) delays between
the tWo processors.

Py Py P1 i
A A
4} 4
6 B o
¢ 76
D E o
N §\\3
'3 oS \ \\\1\\
13
29p l [
d, 4 e 4 23 fe
R
27 BCRR
(a) Schedule without node duplication (b} Schedule with node duplication (A > Aand A C — C and C')

Fig. 2.8 Node-duplication scheduling to eliminate communication delays between processors (I: idle time;
shaded areas: communication delays)

Grain packing and node duplication are often used jointly to determine the best grain size and corresponding
schedule. Four major steps are involved in the grain determination and the process of scheduling optimization:

Step 1. Construct a fine-grain program graph.

Step2. Schedule the fine-grain computation.

Step3. Perform grain packing to produce the coarse grains.
Step4. Generate a parallel schedule based on the packed graph.

Program and Network Properties . 5

The purpose of multiprocessor scheduling is to obtain a minimal time schedule for the computations
involved. The following example clarifies this concept.

) e

Example 2.5 Program decomposition for static multipro-
cessor scheduling (Kruatrachue and Lewis, 1988)

Figure 2.9 shows an example of how to calculate the grain size and communication latency. In this example,
two 2 x 2 matrices 4 and B are multiplied to compute the sum of the four elements in the resulting product
matrix C = 4 x B. There are eight multiplications and seven additions to be performed in this program, as

written below:
1:‘411‘412] % [Bn BIZ] _ [Cn Cn:]
Ay Ay By By Cy Cpy

By Ayq x By; Ajp % By

k=10r 2 Grain size 101 . Grain size 8

Ay x By Gjj=Ayx By + Ay xBy
CPU CYCLE CPU.CYCLE
MoveW Axx, D1 15 MovelL PARY,D1 20
MoveW Bxx, D2 15 Movel PAR2,D2 20
MPTY D1, D2 71 ADDL D1, D2 8
MOVEL D2, PAR 20 MOVEL D2 PSUM 20

{a) Grain size calculation in M6B000 assembly code at 20-MHz cycie

P1 I {Sertal link) P2 d=T1+T2+T3I+ T4+ T5+7T6
=20+20+32+20+20+100
TS =212 cydles
T3 = 32-bit transmission time at 2¢ Mbps
normalized to MGS000 cycle at 20 MHz.

T6 = delay due to software protocols (assume 5
Move instructions, 100}

(b} Calculation of communication delay d

(c) Fine-grain program graph

Fig.2.9 Calculation of grain size and communication delay for the program graph in Example 2.5 (Courtesy of
-Kruatrachue and Lewis; reprinted with permission from JEEE Software, 1988)

60 "= Advanced Computer Architecture

Cy =A% By + Ay X By
Cip =A X By + App X By
Cyy = Ay X By + Az X By
Cyy =As X By +An X Bn
Sum =Cy+Cp+ Gy +Cn2

As shown in Fig. 2.9a, the eight multiplications are performed in eight ® nodes, each of which has a grain
size of 101 CPU cycles. The remaining seven additions are performed in a 3-level binary tree consisting of
seven @ nodes. Each additional node requires 8 CPU cycles.

The interprocessor communication latency along all edges in the program graph is eliminated as d = 212
cycles by adding all path delays between two communicating processors (Fig. 2.9b).

A fine-grain program graph is thus obtained in Fig. 2.9c. Note that the grain size and communication delay
may vary with the different processors and communication links used in the system.

Figure 2.10 shows scheduling of the fine-grain program first on a sequential uniprocessor (P1) and then
on an eight-processor (P1 to P8) system (Step 2). Based on the fine-grain graph (Fig. 2.9¢), the sequential
execution requires 864 cycles to complete without incurring any communication delay.

Figure 2.10b shows the reduced schedule of 741 cycles needed to execute the 15 nodes on 8 processors
with incurred communication delays (shaded areas). Note that the communication delays have slowed down
the parallel execution significantly, resulting in many processors idling (indicated by [}, except for P1 which
produces the final sum. A speedup factor of 864/741 = 1.16 is observed.

0 P1 P1 P2 P3 P4 PS PE P7 Pa
— 0 ——
101 A A|lB|C|DIE|F|G|H
B N T TR
202 S RN A R
[RN $\ :\\ o
W E cashay | R R \é\&\‘ \
] 404 3215ts fﬁi Time
E R N
Time 505 . 523b Y | 1R 1 1
606 531 2
G // I l I
707 H 7337 0
gog L— 741 P
816 ‘i ARAR’ l vilvily ¥
824 N
832 Y]
Saa]
848 0
{ 865
864
(a) A sequential schedule {b) A parallel schedule
Fig.2.10 Sequential versus parallel scheduling in Example 2.5 '/

Next we show how to use grain packing (Step 3) to reduce the communication overhead. As shown in
Fig. 2.11, we group the nodes in the top two levels into four coarse-grain nodes labeled V, W, X, and Y. The

Program and Network Properties -l

remaining three nodes (N, O, P) then form the fifth node Z. Note that there is only one level of interprocessor
communication required as marked by 4 in Fig. 2.11a.

Py P2 P3 Ps
-— 0
101 v W X Y
B D H
K L M
_\‘ R '\-:\‘ ~ ‘\
Tim S G N
e N N \\\\
N SRS AN
R R S
Communication deiay: | Grain size:
d=210 V=W=X=Y=101+ 101 +B8 =210
Z=8+8+8=24 J
{a) Grain packing of 15 small nodes into 5 bigger nodes (b) Parallel schedule for the packed program
Fig.2.11 Parafiel scheduling for Example 2.5 afrer grain packing to reduce communicati

Since the maximum degree of parallelism is now reduced to 4 in the program graph, we use only four
processors to execute this coarse-grain program. A parallel schedule is worked out (Fig. 2.11) for this program
in 446 cycles, resulting in an improved speedup of 864/446 = 1.94.

N 2.3 || PROGRAM FLOW MECHANISMS

Conventional computers are based on a control flow mechanism by which the order of program
execution is explicitly stated in the user programs. Dataflow computers are based on a data-
driven mechanism which allows the execution of any instruction to be driven by data (operand) availability.
Dataflow computers emphasize a high degree of parallelism at the fine-grain instructional level. Reduction
computers are based on a demand-driven mechanism which initiates an operation based on the demand for
its results by other computations.

2.3.1 Control Flow Versus Data Flow -~

Conventional von Neumann computers use a program counter {(PC) to sequence the execution of instructions '
in a program. The PC is sequenced by instruction flow in a program. This sequential execution style has been
called control-driven, as program flow is explicitly controlled by programmers.

A uniprocessor computer is inherently sequential, due to use of the control driven mechanism. However,
control flow can be made parallel by using parallel language constructs or parallel compilers. In this book,
we study primarily parallel control-flow computers and their programming techniques. Until the data-driven
or demand-driven mechanism is proven to be cost-effective, the control-flow approach will continue to
dominate the computer industry.

62 Tl Advanced Computer Architecture

In a dataflow computer, the execution of an instruction is driven by data availability instead of being
guided by a program counter. In theory, any instruction should be ready for execution whenever operands
become available. The instructions in a data-driven program are not ordered in any way. Instead of being
stored separately in a main memory, data are directly held inside instructions.

Computational results (dafa tokens) are passed directly between instructions. The data generated by an
instruction will be duplicated into many copies and forwarded directly to all needy instructions. Data tokens,
once consumed by an instruction, will no longer be available for reuse by other instructions.

This data-driven scheme requires no program counter, and no contro} sequencer. However, it requires
special mechanisms to detect data availability, to match data tokens with needy instructions, and to enable
the chain reaction of asynchronous instruction executions. No memory sharing between instructions results
in no side effects.

Asynchrony implies the need for handshaking or token-matching operations. A pure dataflow computer
exploits fine-grain parallelism at the instruction level. Massive parallelism would be possible if the data-
driven mechanism could be cost-effectively implemented with low instruction execution overhead.

A Dataflow Architecture There have been quite a few experimental dataflow computer projects. Arvind
and his associates at MIT developed a tagged-token architecture for building dataflow computers. As shown
in Fig. 2.12, the global architecture consists of n processing elements (PEs) interconnected by an n X n routing
network. The entire system supports pipelined dataflow operations in all # PEs. Inter-PE communications are
done through the pipelined routing network.

From routing network

f
[Local path i
| I
| | Frogram| |
| Token Match Memory | |
Global path | ‘ |
l 1 !

@

—3 i g AU Co-rlr}pute |
] ° ag |
n x i Routing Network i 2 I
e ‘ |
1 I[- From Token | :
PE; PE; PEL| | f
L= | |

To Rouwting Network

{a) The global architeclure {b) Interior design of a processing element

Within each PE, the machine provides a low-level token-matching mechanism which dispatches only
those instructions whose input data (tokens) are already available. Each datum is tagged with the address of

Program and Network Properties L. 63

the instruction to which it belongs and the context in which the imstruction is being executed. Instructions
are stored in the program memory. Tagged tokens enter the PE through a local path. The tokens can also
be passed to other PEs through the routing network. All intemal token circulation operations are pipelined
without blocking.

One can think of the instruction address in a dataflow computer as replacing the program counter, and
the context identifier replacing the frame base register in a control flow computer. It is the machine’s job to
match up data with the same tag to needy instructions. In so doing, new data will be produced with a new tag
indicating the successor instruction(s). Thus, each instruction represents a synchronization operation. New
tokens are formed and circulated along the PE pipeline for reuse or to other PEs through the global path,
which is also pipelined.

Another synchronization mechanism, called the I-structure, is provided within each PE. The /-structure is
a tagged memory unit for overlapped usage of a data structure by both the producer and consumer processes.
Each word of I-structure uses a 2-bit tag indicating whether the word is empty, is full, or has pending read
requests. The use of /-structure is a retreat from the pure dataflow approach. The purpose is to reduce excessive
copying of large data structures in dataflow operations.

1)

The dataflow graph in Fig. 2.13a shows that 24 instructions are to be executed (8 divides, 8 multiplies, and
8 adds). A dataflow graph is similar to a dependence graph or program graph. The only difference is that data
tokens are passed around the edges in a dataflow graph. Assume that each add multiply, and divide requires
1, 2, and 3 cycles to complete, respectively. Sequential execution of the 24 instructions on a control flow
uniprocessor takes 48 cycles to complete, as shown in Fig. 2.13b.

On the other hand, a dataflow multiprocessor completes the execution in 14 cycles in Fig. 2.13¢. Assume
that all the external inputs (d, c;, f; for i = 1, 2. ...,8 and c;) are available before entering the loop. With four
processors, instructions ay, a,, a3, and a, are all ready for execution in the first three cycles. The results
produced then trigger the execution of as, by, ag, and a- starting from cycle 4. The data-driven chain reactions
are shown in Fig. 2.13¢. The output ¢; is the last one to produce, due to its dependence on all the previous ¢;’s.

Figure 2.13d shows the execution of the same set of computations on a conventional multiprocessor using
shared memory to hold the intermediate results (s; and ¢, for i = 1, 2, 3, 4). Note that no shared memory is
used in the dataflow implementation. The example does not show any time advantage of dataflow execution
over control flow execution.

The theoretical minimum time is 13 cycles along the critical path a,b;cc; ...cq. The chain reaction control
in dataflow is more difficult to implement and may result in longer overhead, as compared with the uniform
operations performed by all the processors in Fig. 2.13d.

Example 2.6 Comparison of dataflow and control-flow
computers (Gajski, Padua, Kuck, and Kuhn, 1982)

64 i Advanced Computer Architecture

input d, e,f d1 31 d2 32 d3 33 d4 94 d5 35 dG 96 dT e-, ds 88
Cu= 0
forifrom 1to B do
begin
al = dl = ei
bi = ai * fl
€= by + Gy
end
outputa, b, c

(a) A sample program and its dataflow graph

43 46 48

10 12
[3 [bifa] 2] by e [2% [bs [

1 4 6 7

{b) Sequential execution on a uniprocessor in 48 cycles

4 7 891011 121314
25 [e1]C2[Cs]°a]%s[%] 7]]

[

Fby by [bg [bg [bg| -
[% [a [bs]bs]by|

l

(& T o 1 %]

.
2
l

a2

(c) Data-driven execution on a 4-processor dataflow computer in 14 cycles

1 4 7 9 11121314 :
[a [@ [by [bs [s1[ti]ce[cs] s4=bp*byty=by*syci=by+cnc5=bscy
[a [a [by | bg [S2[t2[%2]%] S2=ba+bstp=81+55C;=81%GpC=53%¢4
[a3 [3 [by] by [ssfty[cs[c7| S3=bg+bglg=by+saca=ty+cycr=ty+cy
[3, [a5 [by | bg [Se]ts[Cal%] sa=bg+brty=ss+s5ca=ta+coCa=la+cy

{d) Paralie} execution on a shared-memory 4-processor system in 14 cycles

Fig.2.43 Comparison between datafiow and control-flow computers (adapted from Gajski, Padua, Kuck, and
Kushn, 1982; reprinted with permission from IEEE Computer, Feb. 1982)

One advantage of tagging each datum is that data from different contexts can be mixed freely in the
instruction execution pipeline. Thus, instruction-level parallelism of dataftow graphs can absorb the
communication latency and minimize the losses due to synchronization waits. Besides token matching
and I-structure, compiler technology is also needed to generate dataflow graphs for tagged-token dataflow
computers. The dataflow architecture offers in theory a promising modet for massively paraliel computations
because all far-reaching side effects are removed. However, implementation of these concepts on a commercial
scale has proved to be very difficult.

Program and Network Properties "

2.3.2 Demand-Driven Mechanisms

In a reduction machine, the computation is triggered by the demand for an operation’s result. Consider the
evaluation of a nested arithmetic expression a = {(b+ 1) x ¢ — (d+). The data-driven computation seen
above chooses a bottom-up approach, starting from the innermost operations » + 1 and d+ e, then proceeding
to the X operation, and finally to the outermost operation ~. Such a computation has been called eager
evaluation because operations are carried out immediately after all their operands become available.

A demand-driven computation chooses a top-down approach by first demanding the value of «, which
triggers the demand for evaluating the next-level expressions (5 + 1) X ¢ and d + e, which in tumn triggers the
demand for evaluating b + | at the innermost level. The results are then returned to the nested demander in
the reverse order before a is evaluated.

A demand-driven computation corresponds to lazy evaluation, because operations are executed only when
their results are required by another instruction. The demand driven approach matches naturally with the
functional programming concept. The removal of side effects in functional programming makes programs
easier to parallelize. There are two types of reduction machine models, both having a recursive control
mechanism as characterized below,

Reduction Machine Models In a string reduction model, each demander gets a separate copy of the
expression for its own evaluation. A long string expression is reduced to a single value in a recursive fashion.
Each reduction step has an operator followed by an embedded reference to demnand the corresponding input
operands. The operator is suspended while its input arguments are being evaluated. An expression is said to
be fully reduced when all the arguments have been replaced by literal values.

In a graph reduction model, the expression is represented as a directed graph. The graph is reduced by
evaluation of branches or subgraphs. Different parts of a graph or subgraphs can be reduced or evaluated
in parallel upon demand. Each demander is given a pointer to the result of the reduction. The demander
manipulates all references to that graph.

Graph manipulation is based on sharing the arguments using pointers. This traversal of the graph and
reversal of the references are continued until constant arguments are encountered. This proceeds until the
value of @ is determined and a copy is returned to the original demanding instruction.

2.3.3 Comparison of Flow Mechanisms

Control-flow, dataflow, and reduction computer architectures are compared in Table 2.1. The degree of
explicit control decreases from control-driven to demand-driven to data-driven. Highlighted in the table are
the differences between eager evaluation and lazy evaluation in data-driven and demand-driven computers,
respectively.

Furthermore, control tokens areused in control-low computers and reduction machines, respectively. The
listed advantages and disadvantages of the dataflow and reduction machine models are based on research
findings rather than on extensive operational experience.

Even though conventional von Neumann model has many disadvantages, the industry is still building
computers foliowing the control-flow model. The choice was based on cost-effectiveness, marketability, and
the narrow windows of competition used by the industry. Program flow mechanisms dictate architectural
choices. Both dataflow and reduction models, despite a higher potential for paralielism, are still concepts in
the research stage. Control-flow machines still dominate the market.

%

Advanced Computer Architecture

Table 2.1 ControlFlow, Dataflow, and Reduction Computers
Machine Model Control Flow (control-driven)} Dataflow (data-driven) Reduction (demand-driven)
Conventional computation; token | Eager evaluation; statements | Lazy evaltuation; statements
Basic, "of control indicates when a| areexecuted whenall of their| are executed omly when
Definition statement should be executed operands are available their result is required for
' another computation
Full control . . “
Very high potential for Only required instructions
The most suc'cessful model parallelism are executed
for commercial products .
Advantages - " :
High throughput High degree of parallelism
Complex data and control
structures are easily implemented Free from side effects Easy mampulmon of data
: : structires
In theory, less efficient than the | Time lost waiting for| Does not support sharing of
other two unneeded arguments objects with changing local
Disadvantages | Difficult in. preventing run-time | High control overhead :
' errors : - - : Tiné needed to pmpngate
Difficult in manipulating dcmmmkem
data structures

{Courtesy of Wah, Lowrie, and Li; reprinted with permission from Computers Jor Artificial Inrelligence Processing edited
by Wah and Ramamoorthy, Wiley and Sons, Inc., 1990)

In this book, we study mostly control-flow parallel computers. But dataflow and multithreaded architectures
will be further studied in Chapter 9. Dataflow or hybrid von Neumann and dataflow machines offer design
alternatives; stream processing (see Chapter 13) can be considered an example.

As far as innovative computer architecture is concerned the dataflow or hybrid models cannot be ignored.
Both the Electrotechnical Laboratory (ETL) in Japan and the Massachusetts Institute of Technology have
paid attention to these approaches. The book edited by Gaudiot and Bic (1991) provides details of some
development on dataflow computers in that period.

: m 'SYSTEM INTERCONNECT ARCHITECTURES

Static and dynamic networks for interconnecting computer subsystems or for constructing
multiprocessors or multicomputers are introduced below. We study first the distinctions
between direct networks for static connections and indirect networks for dynamic connections. These
networks can be used for internal connections among processors, memory modules, and 1/0 adaptors in a
centralized system, or for distributed networking of multicomputer nodes.

Various topologies for building networks are specified below. Then we focus on the communication
properties of interconnection networks. These include latency analysis, bisection bandwidth, and data-routing
functions. Finally, we analyze the scalability of parallel architecture in solving scaled problems.

Program and Network Properties _— 7

The communication efficiency of the underlying network is critical to the performance of a parallel
computer. What we hope to achieve is a low-latency network with a high data transfer rate and thus a wide
communtication bandwidth. These network properties help make design choices for machine architecture.

2.41 Network Properties and Routing

The topology of an interconnection network can be either static or dynamic. Sratic networks ate formed
of point-to-point direct connections which will not change during program execution. Dynamic networks
are implemented with switched channels, which are dynamically configured to match the communication
demand in user programs. Packet switching and routing is playing an important role in modern multi-
processor architecture, which is discussed in Chapter 13; the basic concepts are discussed in Chapter 7.

Static networks are used for fixed connections among subsystems of a centralized system or multiple
computing nodes of a distributed system. Dynamic networks include buses, crossbar switches, multistage
networks, and routers which are often used in shared-memory multiprocessors, Both types of networks have
also been implemented for inter-PE data routing in SIMD computers.

Before we discuss various network topologies, let us define several parameters often used to estimate the
complexity, communication efficiency, and cost of a network. In general, a network is represented by the
graph of a finite number of nodes linked by directed or undirected edges. The number of nodes in the graph
is called the network size.

Node Degree and Network Diameter The number of edges (links or channels) incident on a node is
called the node degree d. In the case of unidirectional channels, the number of channels into a node is the in
degree, and that out of a node is the ouf degree. Then the node degree is the sum of the two. The node degree
reflects the number of 1/0 ports required per node, and thus the cost of a node. Therefore, the node degree
should be kept a (small) constant, in order to reduce cost. A constant node degree helps to achieve modularity
in building blocks for scalable systems.

The diameter D of a network is the maximum shortest path between any two nodes. The path length is
measured by the number of links traversed. The network diameter indicates the maximum number of distinct
hops between any two nodes, thus providing a figure of communication merit for the network. Therefore, the
network diameter should be as small as possible from a communication point of view.

Bisection Width When a given network is cut into two equal halves, the minimum number of edges
(channels) along the cut is called the channel bisection width b. In the case of a communication network, each
edge may correspond to a channel with w bit wires. Then the wire bisection width is B = bw. This parameter
B reflects the wiring density of a network. When B is fixed, the channel width (in bits) w = B/b. Thus the
bisection width provides a good indicator of the maximum communication bandwidth along the bisection of
a network.

Another quantitative parameter is the wire length (or channel length) between nodes. This may affect
the signal latency, clock skewing, or power requirements. We label a network symmetric if the topology is
the same looking from any node. Symmetric networks are easier to implement or to program. Whether the
nodes are homogenecous, the channels are buffered, or some of the nodes are switches, are some other useful _
properties for characterizing the structure of a network.

Data-Routing Functions A data-routing network is used for inter-PE data exchange. This routing network
can be static, such as the hypercube routing network used in the TMC/CM-2, or dynamic such as the multistage

68 " iililin Advanced Computer Architecture

network used in the IBM GF11. In the case of a multicomputer network, the data routing is achieved through
message passing. Hardware routers are used to route messages among multiple computer nodes.

We specify below some primitive data-routing functions implementable on an inter-PE routing network.
The versatility of a routing network will reduce the time needed for data exchange and thus can significantly
improve the system performance.

Commonly seen data-routing functions ameng the PEs include shifting, rotation, permutation (one-to-
one), broadcast (one-to-all), multicast (one-to-many), shuffle, exchange, etc. These routing functions can be
implemented on ring, mesh, hypercube, or multistage networks.

Permutations For n objects, there are n! permutations by which the # objects can be reordered. The set of
all permutations form a permutation group with respect to composition operation. One can use cycle notation
to specify a permutation function.

For example, the permutation 7 = (a, b, ¢} (d,) stands for the bijection mapping: a — b, boc,c—a,
d — e, and e — d in a circular fashion. The cycle (a, b, ¢) has a period of 3, and the cycle (d, e) a period of 2.
Combining the two cycles, the permutation 7 has a period of 2 x 3 = 6. If one applies the permutation 7 six
times, the identity mapping I = (a), (b), (c). (), (e) is obtained.

One can use a crossbar switch to implement the permutation in connecting n PEs among themselves.
Multistage networks can implement some of the permutations in one or multiple passes through the network.
Permutations can also be implemented with shifting or broadcast operations. The permutation capability of
a network is often used to indicate the data routing capability. When # is large, the permutation speed often
dominates the performance of a data routing network.

Perfect Shuffle and Exchange Perfect shuffie is a special permutation function suggested by Harold
Stone (1971} for parallel processing applications. The mapping corresponding to a perfect shuffle is shown
in Fig. 2.14a. Its inverse is shown on the right-hand side (Fig. 2.14b}.

000 — » 000 000—» 000 =0
001 001 001 001 =1
010 010 010 010 =2
011 0tt 011 011 =3
100 100 100 100 =4
101 101 101 101 =5
110 110 110 110 =6
111 — 111 111—> 111 =7
(a) Perfect shuffle {b) Inverse perfect shufile

Fig. 2.14 Perfect shuffle and its inverse mapping over eight objects (Courtesy of H. Stone; reprinted with
permission from IEEE Trans. Computers, 1971) '

In general, to shuffle n = 2* objects evenly, one can express each object in the domain by a k- bit binary
number x = (X;_1,..., X, Xp). The perfect shuffle maps x to y, where y = (x;.2,..., X1, Xo xg_1) is obtained from
x by shifting 1 bit to the left and wrapping around the most significant to the least significant position.

Program and Network Properties - 60

Hypercube Routing Functions A three-dimensional binary cube network is shown in Fig. 2.15, Three
routing functions are defined by three bits in the node address. For example, one can exchange the data
between adjacent nodes which differ in the least significant bit Cy, as shown in Fig. 2.15b.

Similarly, two other routing patterns can be obtained by checking the middle bit Cy (Fig. 2.15¢) and
the most sigificant bit C; (Fig. 2.15d), respectively. In general, an »n-dimensional hypercube has » routing
tunctions, defined by each bit of the n-bit address. These data exchange functions can be used in routing
messages in a hypercube multicomputer.

110 111

010 o1

100 101

000 00t

{a) A 3cube with nodes denoted as C,C4Cy in binary

000 001} [ot0]eslo1] [100

{b) Routing by least significant bit. C;

t

(c) Routing by middle bit, C,4

]
000] ro-% colGaE (5] o0 o] Gl
! t | f

{d) Routing by most significant bit, C,,

Fig.2.15 Three routing functions defined by a binary 3-cube

Broadcast and Multicast Broadcast is a one-to-all mapping. This can be easily achieved in an SIMD
computer using a broadcast bus extending from the array controtler to all PEs. A message-passing
multicomputer also has mechanisms to broadcast messages. Multicast corresponds to a mapping from one
PE to other PEs (one to many).

Broadcast is often treated as a global operation in a multicomputer, Multicast has to be implemented with
matching of destination codes in the network.

Network Performance To summarize the above discussions, the performance of an interconnection
network is affected by the following factors:

70 "N Advanced Computer Architecture

(1) Functionality—This rtefers to how the network supports data routing, interrupt handling,
synchronization, request/message combining, and coherence.

(2) Network latency—-This refers to the worst-case time delay for a unit message to be transferred through
the network.

(3) Bandwidth—This refers to the maximum data transfer rate, in terms of Mbytes/s or Gbytes/s,
transmitted through the network.

(4) Hardware complexiny—This refers to implementation costs such as those for wires, switches,
connectors, arbitration, and interface logic. h

(5) Scalability—This refers to the ability of a network to be modularly expandable with a scalable
performance with increasing machine resources.

2.4.2 Static Connection Networks

Static networks use direct links which are fixed once built. This type of network is more suitable for building
computers where the communication patterns are predictable or impiementable with static connections. We
describe their topologies below in terms of network parameters and comment on their refative merits in
relation to communication and scalability.

Linear Array This is a one-dimensional network m which N nodes are connected by & — 1 links in a line
(Fig. 2.16a). Internal nodes have degree 2, and the terminal nodes have degree 1. The diameter is N - 1, which
is rather long for large N. The bisection width /= 1. Linear arrays are the simplest connection topology. The
structure is nol symmetric and poses a communication inefficiency when N becomes very large.

For N=2, it is clearly simple and economic to implement a linear array. As the diameter increases linearly
with respect to N, it should not be used for large A, It should be noted that a linear array is very different from
a bus which is time-shared through switching among the many nedes attached to it. A linear array allows
concurrent use of different sections (channels) of the structure by different source and destination pairs.

Ring and Chordal Ring A ring is obtained by connecting the two terminal nodes of a linear array with
one extra link (Fig. 2.16b). A ring can be unidirectional or bidirectional. It is symmetric with a constant node
degree of 2. The diameter is | N72] for a bidirectional ring, and N for unidirectional ring.

The IBM token ring had this topology, in which messages circulate along the ring until they reach
the destination with a matching 1D. Pipelined or packet-switched rings have been implemented in the
CDC Cyberplus multiprocessor (1983) and in the KSR-1 computer system (1992) for interprocessor
communications.

By increasing the node degree from 2 to 3 or 4, we obtain two chordal rings as shown in Figs. 2.16¢ and
2.16d, respectively. One and two extra links are added to produce the two chordal rings, respectively. In
general, the more links added, the higher the node degree and the shorter the network diameter.

Comparing the 16-node ring (Fig. 2.16b) with the two chordal rings (Figs. 2.16¢ and 2.16d}, the network
diameter drops from & to 5 and to 3, respectively. In the extreme, the completely connected network in
Fig. 2.16f has a node degree of 15 with the shortest possible diameter of 1.

Barrel Shifter As shown in Fig. 2.16e for a network of N = 16 nodes, the barrel shifter is obtained from
the ring by adding extra links from each node to those nodes having a distance equal to an integer power of
2. This implies that node is connected to node j if |j - i| = 2" for some r =0, 1, 2,..., n — | and the network
size is M= 2". Such a barrel shifter has a node degree of d = 2n — | and a diameter D = n/2.

Program and Network Properties . 71

(d) Chordat ring of degree 4
(same as illiac mesh)

0 1
o—“.!".'.h‘-'-'o
,dt!""v-s'

R

N

7

\

\\‘
'4’7_.'.
J

.

&

e
|
7
X
{5
&4

(e} Barrel shifter (f) Completely connected

Fig.2.16 Linear array, ring, chordal rings of degrees 3 and 4, barrel shifter, and completely connected network

Obviously, the connectivity in the barrel shifter is increased over that of any chordal ring of lower node
degree. For N = 16, the barrel shifter has a node degree of 7 with a diameter of 2. But the barrel shifter
complexity is still much lower than that of the completely connected network (Fig. 2.16f).

Tree and Star A binary tree of 31 nodes in five levels is shown in Fig. 2.17a, In general, a k-levei,
completely balanced binary tree should have N = 2% - 1 nodes. The maximum node degree is 3 and the
diameter is 2(k - 1). With a constant node degree, the binary tree is a scalable architecture. However, the
diameter is rather long.

The star is a two-level tree with a high node degree at the central node of d= N - 1 (Fig. 2.17b) and a small
constant diameter of 2. A DADO multiprocessor was built at Columbia University (1987) with a 10-level
binary tree of 1023 nodes. The star architecture has been used in systems with a centralized supervisor node.

72 T Advanced Computer Architecture

FotTree The conventional tree structure used in computer science can be modified to become the fat tree,
as introduced by Leiserson in 1985. A binary fat tree is shown in Fig. 2.17c. The channel width of a fat tree
increases as we ascend from leaves to the root. The fat tree is more like a real tree in that branches get thicker
toward the root.

(a) Binary tree (b) Star {c) Binary fat tree

Fig. 2.17 Tree, star, and fat tree

One of the major problems in using the conventional binary tree is the bottleneck problem toward the root,
since the traffic toward the root becomes heavier. The fat tree has been proposed to alleviate the problem. The
idea of a fat free was applied in the Connection Machine CM-5, to be studied in Chapter 8. The idea of binary
fat trees can also be extended to multiway fat trees,

Mesh and Torus A 3 x 3 example mesh network is shown in Fig. 2.18a. The mesh is a frequently used
architecture which has been implemented in the Illiac IV, MPP, DAP, and Intel Paragon with variations.

In general, a k-dimensional mesh with & = »* nodes has an interior node degree of 2k and the network
diameter is &(» ~ 1). Note that the pure mesh as shown in Fig. 2.18a is not symmetric. The node degrees at
the boundary and corner nodes are 3 or 2.

Figure 2.18b shows a variation of the mesh by allowing wraparound connections. The [lliac I'V assumed an
% x 8 mesh with a constant node degree of 4 and a diameter of 7. The Illiac mesh is topologically equivalent
to a chordal ring of degree 4 as shown in Fig. 2.16d foran N=9=3x3 configuration,

In general, an n % » llliac mesh should have a diameter of &= # — 1, which is only half of the diameter for
a pure mesh. The forus shown in Fig. 2.18c can be viewed as another variant of the mesh with an even shorter
diameter. This topology combines the ring and mesh and extends to higher dimensions.

The torus has ring connections along each row and along each column of the array. In general, ann X n
binary torus has a node degree of 4 and a diameter of 272/2]. The torus is a symmetric topology. All added
wraparound connections help reduce the diameter by one-half from that of the mesh.

SystolicArrays This is a class of multidimensional pipelined array architectures designed for implementing
fixed algorithms. What is shown in Fig. 2.18d is a systolic array specially designed for performing matrix
multiplication. The interior node degree is 6 in this example.

In general, static systolic arrays are pipelined with multidirectional flow of data streams. The commercial

machine Intel iWarp system (Anaratone et al., 1986) was designed with a systolic architecture. The systolic
array has become a popular research area ever since its introduction by Kung and Leiserson in 1978.

Program and Network Properties . 13

S =
—OITOD O o
WY oRP

(a) Mesh {b) liliac meash {c) Tarus (d) Systoiic array

S5
5]

Fig.2.18 Mesh, llliac mesh, torus, and systolic array

With fixed interconnection and synchronous operation, a systolic array matches the communication
structure of the algorithm. For special applications like signal/image processing, systolic arrays may offer
a better performance/cost ratio. However, the structure has limited applicability and can be very difficult to
program. Since this book emphasizes general-purpose computing, we will not study systolic arrays further.
Interested readers may refer to the book by S.Y. Kung (1988) for using systolic and wavefront architectures
in building VLSI array processors.

Hypercubes This is a binary n-cube architecture which has been implemented in the iPSC, nCUBE, and
CM-2 systems. In general, an n-cube consists of ¥ = 2" nodes spanning along » dimensions, with two nodes
per dimension. A 3-cube with 8 nodes is shown in Fig. 2.19a.

A 4-cube can be formed by interconnecting the corresponding nodes of two 3 cubes, as illustrated in
Fig. 2.19b. The node degree of an n-cube equals n and 5o does the network diameter. In fact, the node degree
increases linearly with respect to the dimension, making it difficult to consider the hypercube a scalable
architecture.

Binary hypercube has been a very popular architecture for research and development in the 1980s. Both
Intel iPSC/1, iPSC/2, and nCUBE machines were built with the hypercube architecture. The architecture
has dense connections. Many other architectures, such as binary trees, meshes, etc., can be embedded in the
hypercube.

With poor scalability and difficulty in packaging higher-dimensional hypercubes, the hypercube
architecture was gradually being replaced by other architectures. For example, the CM-5 employed the fat
tree over the hypercube implemented in the CM-2. The Intel Paragon employed a two-dimensional mesh
over its hypercube predecessors. Topological equivalence has been established among a number of network
architectures. The bottom line for an architecture to survive in future systems is packaging efficiency and
scalability to allow modular growth.

Cube-Connected Cycles This architecture is modified from the hypercube. As illustrated in Fig. 2.19¢, a
3-cube is modified to form 3-cube-connected cycles (CCC). The idea is to cut off the corer nodes (vertices)
of the 3-cube and replace each by a ring (cycle) of 3 nodes.

In general, one can construct &-cube-connected cycles from a k-cube with n = 2% cycles nodes as illustrated
in Fig. 2.19d. The idea is to replace each vertex of the k dimensional hypercube by a ring of k nodes. A k-cube
can be thus transformed to a k-CCC with k x 2 nodes.

The 3-CCC shown in Fig. 2.19b has a diameter of 6, twice that of the original 3-cube. In general, the
network diameter of a k-CCC equals 24. The major improvement of a CCC lies in its constant node degree of
3, which is independent of the dimension of the underlying hypercube.

74 "E Advanced Computer Architecture

{a) 3-cube (b} A 4-cube formed by interconnecting two 3-cubes

(c) 3-cube-connected cycles (d) Replacing each node of a k~cube by a ring (cycle)
of k nodes to form the k-cube-connected cycles

'Fig:219 Hypercubes and cube-connected

Consider a hypercube with N = 2" nodes. A CCC with an equal number of N nodes must be built from a
Jower-dimension k-cube such that 2" = k-2* for some k < n.

. For example, a 64-node CCC can be formed by replacing the corner nodes of a 4-cube with cycles of four
nodes, corr@sponding to the case n = 6 and k =4, The CCC has a diameter of 2k =38, longer than 6 in a 6-cube.
But the CCC has a node degree of 3, smaller than the node degree of 6 in a 6-cube. In this sense, the CCCis
a better architecture for building scalable systems if latency can be tolerated in some way.

k-ary n-Cube Networks Rings, meshes, tori, binary »-cubes (hypercubes), and Omega networks are
topologically isomorphic to a family of k-ary n-cube networks. Figure 2.20 shows a 4-ary 3-cube network.

PP — PR

04

L1
o

T

Fig. 2,20 The k-ary n-cube nietwork shown with k = 4 and n = 3; hidden nodes ar connections are not shown

Program and Network Properties - 75

The parameter » is the dimension of the cube and £ is the rudix, or the number of nodes {multiplicity)
along each dimension. These two numbers are related to the number of nodes, N, in the network by:

N=k" (k= "YN n=logN) (2.3)

A node in the k-ary n-cube can be identified by an n-digit radix-k address 4 = a| a, ...a,, where g,
represents the node’s position in the ith dimension. For simplicity, all links are assumed bidirectional. Each
line in the network represents two communication channels, one in each direction. In Fig. 2.20, the lines
between nodes are bidirectional links.

Traditionally, low-dimensional k-ary n-cubes are called fori, and high-dimensional binary n-cubes are
called Aypercubes. The long end-around connections in a torus can be avoided by folding the network as
shown in Fig. 2.21. In this case, all links along the ring in each dimension have equal wire length when the
multidimensional network is embedded in a plane.

LB Bl B
L O

L

r%’*
i
) S 5
191 S

00U U U e

(a) Tradilional torus (a 4-ary 2-cube) (b} A torus with folded connections

r
—{]
LJ
1/

IRV

I
L

{Ef
T

Fig.2.21 Folded connections to equalize the wire length in a torus network (Courtesy of W. Dally: reprmted
with permission from JEEE Trans. Computers, June 1990)

William Dally (1990) has revealed a number of interesting properties of k-ary n cube networks. The cost
of such a network is dominated by the amount of wire, rather by the number of switches required. Under the
assumption of constant wire bisection, low-dimensional networks with wide channels provide lower latency,
less contention, and higher hot-spot throughput than higher-dimensional networks with narrow channels.

Network Throughput The network throughput is defined as the total number of messages the network can
handle per unit time. One method of estimating throughput is to calculate the capacity of a network, the total
number of messages that can be in the network at once. Typically, the maximum throughput of a network is
some fraction of its capacity.

A hot spot is a pair of nodes that accounts for a disproportionately large portion of the total network
traffic. Hot-spot traffic can degrade performance of the entire network by causing congestion. The hot-spot
throughput of a network is the maximum rate at which méssages can be sent from one specific node P; to
another specific node P;.

Low-dimensional networks operate better under nonuniform loads because they allow better resource
sharing. In a high-dimensional network, wires are assigned to particular dimensions and cannot be shared
between dimensions. For example, in a binary n-cube, it is possible for a wire to be saturated while a
physically adjacent wire assigned to a different dimension remains idle. In a torus, all physically adjacent
wires are combined into a single channel which is shared by all messages.

76 ki Advanced Computer Architecture

As a rule of thumb, minimum network latency is achieved when the network radix & and dimension
1 are chosen to make the components of communication latency due to distance D {the number of hops
between nodes) and the message aspect ratio L/W (message length L normalized to the channel width W)
approximately equal.

Low-dimensional networks reduce contention because having a few high-bandwidth channels results in
more resource sharing and thus a better queueing performance than having many low-bandwidth channels.
While network capacity and worst-case blocking latency are independent of dimension. low-dimensional
networks have a higher maximum throughput and lower average block latency than do high-dimensional
networks.

Both fat tree networks and &-ary n-cube networks are considered universal in the sense that they can
efficiently simulate any other network of the same volume. Dally claimed that any point-to-point network can
be embedded in a 3-D mesh with no more than a constant increase in wiring length.

Summary of Static Networks [nTable2.2, we summarize the important characteristics of static connection
networks. The node degrees of most networks are less than 4, which is rather desirable. For example, the
INMOS Transputer chip was a compute communication microprocessor with four ports for communication.
See also the TILE64 system-on-a-chip described in Chapter 13.

Table 2.2 Summary of Static Network Characteristics

Netwark type Node Network No. of Bisection Symmetry Remarks on
degree, d diameter, links, | width, B network size
Linear Amay 2 N-1 .N -1 1 No N nodes
Ring 2 Lavzd N 2 " Yes N nodes
Completely N-1 I NN - 12 (N12)? Yes N nodes
Connected
Binary 3 2(h - 1) | N-1 1 No Tree height
Tree h= flogzN_l
Star N-1 2 N-1 {n2] No N nodes
2D-Mesh 4 2(r 1) 2N -2r r No rxrmesh
where r = \ﬁ\’
Iliac 4 r- 1 2N 2r No Equivalent to
Mesh a chordal ring
ofr= N
2D-Torus 4 2Lr2] 2N 2r Yes r X r torus
. where r = \/ﬁ
Hypercube n n niN/2 N/2 Yes N nodes,
n=log, N
(dimension)
cce 3 2% 1 +Lk2)| 3NR2 NIZE) Yes N=kx2
nodes with a cycle
_ length & = 3
k-ary n-cube 2n ksl aN 2% Yes N = K" nodes

Program and Network Properties 77

With a constant node degree of 4, a Transputer (such as the T800) becomes applicabie as a building block.
The node degrees for the completely connected and star networks are both bad. The hypercube node degree
increases with log; & and is also bad when the value of N becomes large.

Network diameters vary over a wide range. With the invention of hardware routing (wormhole routing},
the diameter has become less critical an issue because the communication delay between any two nodes
becomes almost a constant with a high degree of pipelining. The number of links affects the network cost.
The bisection width affects the network bandwidth.

The property of symmetry affects scalability and routing efficiency. It is fair to say that the total network
cost increases with d and /. A smaller diameter is still a virtue. But the average distance between nodes may
be a better measure. The bisection width can be enhanced by a wider channel width. Based on the above
analysis, ring, mesh, torus, k-ary #-cube, and CCC all have some desirable features for building MPP systems.

2.4.3 Dynamic Connection Networks

For multipurpose or general-purpose applications, we may need to usc dynamic connections which can
implement all communication patterns based on program demands. Instead of using fixed connections,
switches or arbiters must be used along the connecting paths to provide the dynamic connectivity, In
increasing order of cost and performance, dynamic connection networks include bus systems, multistage
interconnection networks (MIN), and crossbar switch networks.

The price tags of these networks are attributed to the cost of the wires, switches, arbiters, and connectors
required. The performance is indicated by the network bandwidth, data transfer rate, network latency, and
communication patterns supported. A brief introduction to dynamic connection networks is given below.
Details can be found in subsequent chapters.

Digital Buses A bus system is essentially a collection of wires and connectors for data transactions among
processors, memory modules, and peripheral devices attached to the bus. The bus is used for only one
transaction at.a time between source and destination. In case of multiple requests, the bus arbitration logic
must be able to allocate or dealtlocate the bus, servicing the requests one at a time.

For this reason, the digital bus has been called contention bus or a time-sharing bus among multiple
functional modules. A bus system has a lower cost and provides a limited bandwidth compared to the other
two dynamic connection networks. Many industrial and IEEE bus standards are available.

Figure 2.22 shows a bus-connected multiprocessor system. The system bus provides a common
communication path between the processors, I/0 subsystem, and the memory modules, secondary storage
devices, network adaptors, etc. The system bus is often implemented on a backplane of a printed circuit
board. Other boards for processors, memories, or device interfaces are plugged into the backplane board via
connectors or cables.

The active or master devices (processors or I/0 subsystem) generate requests to address the memory. The
passive or slave devices (memories or peripherals) respond to the requests. The common bus is used on a
time-sharing basis, and important busing issues include the bus arbitration, interrupts handling, coherence
protocols, and transaction processing. We will study typical bus systems, such as the VME bus and others,
in Chapter 5. Hierarchical bus structures for building larger multiprocessor systems are studied in Chapter 7.

Advanced Computer Architecture

Processors | P4 P, cees 1P

1 'Y Y I

. ! Y Is)
Caches Cy o veee | Gy SubS‘ystem

k. 4 4 v
Bus m,‘\\\ A e L R R R RN R RN AR AR ARRANIANRY

Y

Main eeun Secondary
Memary M1 My Mm Storage

Fig.2.22 A bus-connected multiprocessor system, such as the Sequent Symmetry 51

Switch Modules An a x b switch module has a inputs and b outputs. A binary switch corresponds to a 2 X
2 switch module in which a = b = 2. In theory, @ and b do not have to be equal. However, in practice, a and b
are often chosen as integer powers of 2; thatis,a=5b= 2* for some k> 1.

Table 2.3 lists several commonly used switch module sizes: 2 x 2, 4 x 4, and 8 x 8. Each input can be
connected to one or more of the outputs. However, conflicts must be avoided at the output terminals. In other
words, one-to-one and one-to-many mappings are allowed; but many-to-one mappings are not allowed due
to conflicts at the output terminal.

Table 2.3 Switch Modules and Legitimate States

Module Size Legitimate States . Permutation Connections
2x2 4 2
4x4 256 24
B8x8 16,777,216 40,320
nxn n" n!

When only one-to-one mappings (permutations) are allowed, we call the module an » X 1 crossbar switch.
For example, a 2 x 2 crossbar switch can connect two possible patterns: straight or crossover. In general, an
1% n crossbar can achieve n! permutations. The numbers of legitimate connection patterns for switch modules
of various sizes are listed in Table 2.3,

Muitistage Interconnection Networks MINs have been used in both MIMD and SIMD computers. A
generalized multistage network is illustrated in Fig. 2.23. A number of a X b switches are used in each
stage. Fixed interstage connections are used between the switches in adjacent stages. The switches can be
dynamically set to establish the desired connections between the inputs and outputs.

Different classes of MINs differ in the switch modules used and in the kind of interstage connection (ISC)
patterns used. The simplest switch module would be the 2 x 2 switches (a = b =2 in Fig. 2.23). The ISC
patterns often used include perfect shuffle, butterfly, multiway shuffle, crossbar, cube connection, etc. Some
of these ISC patterns are shown below with examples.

Program and Network Properties - 79

0—» > - » T — » —=0
1= axb v axb = = v axb =1
a1 switch | § " . |switch| ¢ LS s « |switch] T b1
8 ——p] » - -] - o
a+1 ™ axb ™ =™ axb 3 = M axb r—>b+1
0 — 1 —t SWItCh| o s | switch) ; I « |switch] ¢ 261
ISC, ISC, ISC,

L] L] - -*

L] -* » L]

L] L » L]
ane g —» - - L » J S
—* axb T M axb i~ = T axh [
an - 1—* switch | { + |switch| . o 3 s SWitthl o _on_
Stage 1 Stage 2 X Stage n

Fig. 2.23 A generalized structure of a multistage interconnection network (MIN) built with a x b switch
modules and interstage connection patterns 1SC, 1SC,, ..., ISC,

Omega Network Figures 2.24a to 2.24d show four possible connections of 2 x 2 switches used in
constructing the Omega network. A 16 x 16 Omega network is shown in Fig. 2.24e. Four stages of 2 x 2
switches are needed. There are 16 inputs on the left and 16 outputs on the right. The ISC pattern is the perfect
shuffle over 16 objects.

In general, an #-input Omega network requires log, n stages of 2 x 2 switches. Each stage requires /2
switch modules. In total, the network uses # log, n/2 switches, Each switch module is individually controlled.

Various combinations of the switch states implement different permutations, broadcast, or other
connections from the inputs to the outputs. The interconnection capabilities of the Omega and other networks
will be further studied in Chapter 7.

Boseline Network Wu and Feng (1980) have studied the relationship among a class of multistage
interconnection networks. A Baseline network can be generated recursively as shown in Fig. 2.25a.

The first stage contains one N x N block, and the second stage contains two (¥/2) % {N/2) subblocks, labeled
Cy and C,. The construction process can be recursively applied to the subblocks until the /2 subblocks of
size 2 x 2 are reached.

The small boxes and the ultimate building blocks of the subblocks are the 2 x 2 switches, each with two
legitimate connection states: straight and crossover between the two inputs and two outputs. A 16 x 16 Baseline
network is shown in Fig. 2.25b. In Problem 2.15, readers are asked to prove the topological equivalence
between the Baseline and other networks.

(a) Straight

w o

A %
TR :
Heoliolio
Joloholio:

Sw

{e) 16 x 16 Omega network

-
o~

Advanced Computer Architecture

Fig. 2.24 . The use of 2 x 2 switches and perfect shuffie as an interstage connection pattern to construct a
.16 X 16 Omega network (Courtesy of Duncan Lawrie; reprinted with permission from {EEE Trans.

Computers, Dec. 1975)

0
1
2
3
4
5
6
0 7
—
— 8
i 1 :
: 10
L
N~ 4—
N-3— 12
N-2— ”
N - 1—
14
NxN 15
(a) Recursive construction (b} A 16 = 16 Baseline network

Fig.2.25 Recursive construction of a Baseline network (Courtesy of Wu and Feng; reprinted with permission

from IEEE Trans. Computers, August 1980)

Program and Network Properties . 81
Crossbar Network The highest bandwidth and interconnection capability are provided by crossbar
networks. A crossbar network can be visualized as a single-stage switch network. Like a telephone
switchboard, the crosspoint switches provide dynamic connections between source, destination pairs. Each
crosspoint switch can provide a dedicated connection path between a pair. The switch can be set on or oft
dynamically upon program demand. Two types of crossbar networks are illustrated in Fig. 2.26,

To build a shared-memory multiprocessor, one can use a crossbar network between the processors
and memory modules (Fig. 2.26a). This is essentially a memory-access network. The pioneering C.mmp
multiprocessor (Wulf and Bell, 1972) implemented a 16 x 16 crossbar network which connected 16 PDP
11 processors to 16 memory modules, each of which had a capability of 1 million words of memory cells. The
16 memory modules could be accessed by the processors in parallei.

Transmit
000 O O
.PE219 O ------ O ------- O. ---------------- O -------------------

PE 001 “—O_. ------- OO ------------
CP 002 - OOO -------------------
CP 001 : Y O -------------------

. Cn CP 001 |cP 002 |PE 001

® & »|PE 219{|PE 220“PE 221||PE 222

O Off Receive

(a) Interprocessor—memory crossbar (b) The interprocessor crossbar network built in the
network built in the C.mmp Fujitsu VPP500 vector parallel processor (1992)
multiprocessor at Carnegie-

Mellon University (1972)

Fig.2.26 Two crossbar switch network configurations

Note that each memory module can satisfy only one processor request at a time. When multiple requests
arrive at the same memory module simultaneously, the crossbar must resolve the conflicts. The behavior
of each crossbar switch is very similar to that of a bus. However, each processor can generate a sequence

g2 i Advonced Computer Architecture
of addresses to access multiple memory modules simultancously. Thus, in Fig. 2.26a, only one crosspoint
switch can be set on in each column. However, several crosspoint switches can be set on simultaneously n
order to support paraltel {or interleaved) memory accesses.

Another type of crossbar network is for interprocessor communication and is depicted in Fig. 2.26b. This
large crossbar (224 x 224) was actually built in a vector parallel processor (VPP500) by Fujitsu Inc. (1992).
The PEs are processors with attached memory, The CPs stand for control processors which are used to
supervise the entire system operation, including the crossbar networks. In this crossbar, at one time only one
crosspoint switch can be set on in each row and each column.

The interprocessor crossbar provides permutation connections among the processors. Only one-to-one
connections are provided. Therefore, the # X n crossbar connects at most »# source, destination pairs at a time.
We will further study crossbar networks in Chapters 7 and 8.

Summary In Table 2.4, we summarize the important features of buses, multistage networks, and crossbar
switches in building dynamic networks. Obviously. the bus is the cheapest to build, but its drawback lies in
the low bandwidth available to each processor.

Table 2.4 Summary of Dynamic Network Characteristics

Network Bus Multistage Crossbar
Characteristics System Network Switch
[Minimum latency for

unit data transfer Constant (log; n) Constant
Bandwidth per O(win) to (Xw) O(w) to O(nw) O(w) 1o G{nw)
processor
Wiring Complexity A(w) O(nw logy 1) O w)
Switching Complexity o(n) Ofn logy n) 0G)

Connectivity and

Only one to one at a time.

Some permutations

All permutations,

routing capability and broadcast, if one at a time.
network unblocked
Early representative Symmetry 5-1, BBN TC-2000, Cray Y-MP/816,
computers Encore Multimax IBM RP3 Fujitsu VPP500
Remarks Assume 1 processors 7% n MIN Assume n X n
on the bus; bus using k x k crossbar with
width is w bits. switches with line line width of
width of w bits. w bits.

Another problem with the bus is that it is prone to failure. Some fault-tolerant systems, like the Tandem
multiprocessor for transaction processing, used dual buses to protect the system from single failures.

The crossbar switch is the most expensive one to build, due to the fact that its hardware complexity
increases as n°. However, the crossbar has the highest bandwidth and routing capability. For a small network
size, it is the desired choice.

Program and Network Properties —... 83

Multistage networks provide a compromise between the two extremes. The major advantage of MINs
lies in their scalability with modular construction. However, the latency increases with log #, the number of
stages in the network. Also, costs due to increased wiring and switching complexity are another constraint.

For building MPP systems, some of the static topologies are more scalable in specific applications.
Advances in VLSI and interconnect technologies have had a major impact on multiprocessor system
architecture, as we shall see in Chapter 13, and there has been a clear shift towards the use of packet-based
switched-media interconnects.

| Summary

In this chapter, we have focused on basic program properties which make parallelism possible and determine
the amount and type of parallelism which can be exploited. With increasing degree of multiprocessing, the
rate at which data must be communicated between subsystems also increases, and therefore the system
interconnect architecture becomes important in determining system performance.

We started this chapter with a study of the basic conditions which must be satisfied for parallel
computations to be possible. in essence, it is dependences between operations which limit the amount
of parallelism which can be exploited. After afl, any set of N fully independent operations can always be
performed in parailel.

The three basic data dependences between operations are flow dependence, anti-dependence and output
dependence. Resourze dependence refers to a limitation in available hardware and/or software resources
which limits the achievable degree of parallelism. Bernstein's conditions—which apply to input and output
sets of pracesses—must be satisfied for parallel execution of processes to be possible.

Parallelism may be exploited at the level of software or hardware. For software parallelism, program
design, and the program development and runtime environments play the key role. For hardware
parallelism, availability of the right mix of hardware resources plays the key role. Program partitioning,
grain size, communication latency and scheduling are important concepts; scheduling may be static or
dynamic,

Program flow may be control-driven, data-driven or demand-driven. Of these, control-driven program
flow, as exemplified in the von Neumann model, is the only one that has proved commercially successful
over the last six decades. Other program flow models have been tried out on research-oriented systems,
but in general these models have not found acceptance on a broader basis,

When computer systems consist of muitiple processors—and several other sub-systems such as
memory modules and network adapters—the system interconnect architecture plays a very important
role in determining final system performance. We studied basic network properties, including topology
and routing functionality. Network performance can be characterized in terms of bandwidth, latency,
functionality and scalability.

We studied static network topologies such as the linear array, ring, tree, fat tree, torus and hypercube;
we also looked at dynamic network topologies which involve switching and/or routing of data.With higher
degree of multiprocessing, bus-based systems are unable to meet aggregate bandwidth requirements of
the system; multistage inter-connection networks and crossbar switches can provide better alternatives.

g4 ki

02l

Exercises

Advanced Computer Architecture

Problem 2.1 Define the following terms related
to parallelism and dependence relations:

{a) Computational granularity.

{b) Communication latency.

{c} Flow dependence.

(d) Antidependence.

(e) Output dependence.

(f) 1/O dependence.

{(g) Control dependence.

(h) Resource dependence.

(i) Bernstein conditions.

(i) Degree of parallelism.

Problem 2.2 Define the following terms for
various system interconnect architectures:

{(a) Node degree.

(b) Network diameter.

(c) Bisection bandwidth.

{d) Static connection networks.

(e) Dynamic connection networks.

(/) Nonblocking networks.

(g) Multicast and broadcast.

(h) Mesh versus torus.

(i) Symmetry in networks.

(j) Multistage networks.

(k) Crossbar networks.

(I} Digital buses.

Problem 2.3 Answer the following questions on
program flow mechanisms and computer models:

(a) Compare control-flow, dataflow, and
reduction computers in terms of the program
flow mechanism used.

(b) Comment on the advantages and
disadvantages in control complexity, potential
for paralielism, and cost-effectiveness of the
above computer models.

(c) What are the differences between string
reduction and graph reduction machines?

Problem 2.4 Perform a data dependence analysis
on each of the following Fortran program fragments.
Show the dependence graphs among the statements
with justification.

() S1: A=B+D
§2: C=Ax3
$3: A=A+C
S4: E=A/2

) St X=SINEY)
§2: Z=X+W

$3: Y=-25xW
sS4 X=CO5Z)
(¢} Determine the data dependences in
the same and adjacent iterations of the
following Do-lcop.

Do 101=1N

Sl: A(+1)=B(1-1)+C()
S B(l) =A(l) xK

$3: CcM=B(H-1

10 Continue

Problem 2.5 Analyze the data dependences
among the following statements in a given program:

SI: Load RI, 1024 /R1 « 1024/

$2: Load R2,M(10) {R2 < Memory(10}/

$3: AddRI1,R2 IR1 « (R1) + (R2)/

S4: Store M(1024),R1 /Memory(1024) < (R1)/
S5: Store M((R2)), 1024 /Memory(64) « 1024/

where (Ri) means the content of register Ri and
Memory(10) contains 64 initially.
{a) Draw a dependence graph to show all the
dependences.
(b) Are there any resource dependences if only

Program and Network Properties

one copy of each functional unit is available in
the CPW?

(¢} Repeat the above for the following program
statements:

$1: Load R1, M{(100)

$2: Move R2,R1

53: IncR1 R1e (RH+1/

S4: Add R2,R1 fR2 « (R2) + (R1)/

$5: Store M(100),R1 /Memory(100) «— (R1)/

{R1 ¢ Memory(100)/
R2 « (R1)/

Problem 2.6 A sequential program consists

of the following five statements, S1 through S5.

Considering each statement as a separate process,
clearly identify input set |; and output set O; of each
process. Restructure the program using Bernstein's
conditions in order to achieve maximum parallelism
between processes. If any pair of processes cannot
be executed concurrently, specify which of the three
conditions is not satisfied.

§$1: A=B+C
S2. C=BxD
S3: §=¢0
54: Dol=A 100
§=5+X(
End Do

S5 IF{(S.GT.1000)C=Cx2

Problem 2.7 Consider the execution of the
following code segment consisting of seven
statements. Use Bernstein’s conditions to detect
the maximum parallelism embedded in this code.
Justify the portions that can be executed in parailel
and the remaining portions that must be executed
sequentiall. Rewrite the code using parallel
constructs such as Cobegin and Coend. No variable
substitution is allowed. All statements can be
executed in parallel if they are declared within the
same block of a {Cobegin, Coend) pair.

s1: A=B+C

§2: C=D+E

53 F=G+E

S4: C=A+F

55: M=G+C
56: A=L+C
s7 A=E+A

Problem 2.8 According to program order, the
following six arithmetic expressions need to be
executed in minimum time. Assume that all are
integer operands already loaded into working
registers. No memory reference is needed for the
operand fetch. Also, all intermediate or final results
are written back to working registers without
conflicts.

P1: X— (A+Byx(A-B)

P2: Y« {(C+D)/(C-D)

P3: ZeX+Y

P4: A« ExF

P5: Y—E-Z

Pé: B« (X-F)xA

{a) Use the minimum number of working
registers to rewrite the above HLL program
into a minimum-length assembly language
code using arithmetic opcodes add, subtract,
multiply, and divide exclusively. Assume a fixed
instruction format with three register fields:
two for sources and one for destinations.

(b) Perform a flow analysis of the assembly
code obtained in part (a) to reveal all data
dependences with a dependence graph.

(c) The CPU is assumed to have two add units,
one multiply unit, and one divide unit. Work out
an optimal schedule to execute the assembly
code in minimum time, assuming 1 cycle for
the add unit, 3 cycles for the multiply unit,
and 18 cycles for the divide unit to complete
the execution of one instruction. Ignore all
overhead caused by instruction fetch, decode,
and writeback. No pipelining is assumed here.

Problem 2.9 Consider the following assembly
language code. Exploit the maximum degree of
parallelism among the 16 instructions, assuming no
resource conflicts and multiple functional units are
available simultaneously. For simplicity, no pipelining

gs Tl

is assumed. All instructions take one machine cycle
1o execute. ignore all other overhead.

1. Load R1,A /R1 & Mem{A)/

2: Load R2,B /R2 ¢ Mem(B)/

3: MulR3,R1,R2 /R3 « (R1) x (R2}Y
4. Load R4,D /R4 «— Mem(D)/

5 MulR5R1,R4 /R5 <« (R1} x {R4)/
6: Add R6,R3,R5 /R6 « (R3) + (RSY
7. Store X,Ré IMem(X) « (R&)/
8: LoadR7,C /R7 « Mem(C)/

9: Mul R8,R7,R4 /R8B « {R7) x (R4)/
10: Load R%,E /R9 ¢ Mem(E)/

11: Add R10,R8,R? /R10 « (R8) + (R9)/
12: StoreY,R10 IMem(Y) « (R10Y
13: Add R11,R6,R10 /R11 « (Ré) + (R10)/
14: Store U, R11 {Mem(U) « (R11)/
15: Sub R12,R6,R10 /R12 « (Ré) — (R10)/
16: StoreV,R12 Mem(V} « (R12)/

(a) Draw a program graph with 16 nodes to
show the flow refationships among the 16
instructions.

{b) Consider the use of a three-issue superscalar
processor to execute this program fragment
in minimum time. The processor can issue
one memory-access instruction (Load or

Store but not both), one Add/Sub instruction,
and one Mul {multiply) instruction per cycle.

The Add unit, Load/Store unit, and Muttiply
unit can be used simultaneously if there is no
data dependence.

Problem 2.10 Repeat part (b) of Problem 2.9
on a dual-processor system with shared memory.
Assume that the same superscalar processors are
used and that all instructions take one cycle to
execute.

(a) Partition the given program into two balanced
halves. You may want to insert some load
or store instructions to pass intermediate
results generated by the two processors to
each other. Show the divided program flow
graph with the final output U andV generated
by the two processors separately.

Advanced Computer Architecture

{b) Work out an optimal schedule for parallel
execution of the above divided program by
the two processors in minimum time.

Problem 2.11 You are asked to design a direct
network for a multicomputer with 64 nodes using
a three-dimensional torus, a six-dimensional binary
hypercube, and cube-connected-cycles (CCC) with
a minimum diameter. The following questions are
related to the relative merits of these network
topologies:

(a) Let d be the node degree, D the network
diameter; and | the total number of links in
a network. Suppose the quality of a network
is measured by (d x D x H~". Rank the three
architectures according to this quality
measure.

(b) A mean internode distance is defined as the
average number of hops (links) along the
shortest path for a message to travel from one
nade to another. The average is calculated for
all (source, destination) pairs. Order the three
architectures based on their mean internode
distances, assuming that the probability that a
node will send a message to all other nodes
with distance iis (D —i + 1)/ Zp_, k. where D
is the network diameter.

Problem 2.12 Consider an illiac mesh (8 x 8),
a binary hypercube, and a barrel shifter, all with 64
nodes labeled Ng, N, ..., Ngz. All network links are
bidirectional.

(a) List all the nodes reachable from node Ny
in exactly three steps for each of the three
networks.

(b) Indicate in each case the tightest upper bound
on the minimum number of routing steps
needed to send data from any node N; to
another node N;.

(c) Repeat part (b) for a larger network with
1024 nodes.

Problem 2.13 Compare buses, crossbar switches,
and multistage networks for building a multiprocessor
system with n processcrs and m shared-memory

Program and Network Properties

modules. Assume a word length of w bits and that
2 x 2 switches are used in building the multistage
networks. The comparison study is carried out
separately in each of the following four categories:
{a) Hardware complexities such as switching,
arbitration, wires, connector, or cable
requirements.
(b} Minimum latency in unit data transfer between
the processor and memory module.
(c) Bandwidth range available to each processor.
(d) Communication capabilities such as
permutations, data broadcast, blocking
handling, etc.

Problem 2.14 Answer the following questions
related to multistage networks:

(a) How many legitimate states are there in a
4 X 4 switch module, including both broadcast
and permutations? Justify your answer with
reasoning.

(b) Construct a é4-input Omega network using
4 x 4 switch modules in mulziple stages. How
many permutations can be implemented
directly in a single pass through the network
without blocking?

(c) What is the percentage of one-pass
permutations compared with the total
number of permutations achievable in one or
more passes through the network?

Problem 2.15 Topologically equivalent networks
are those whose graph representations are iso-
morphic with the same interconnection capabili-
ties. Prove the topological equivalence among the
Omega, Flip, and Baseline networks. :

(a) Prove that the Omega network (Fig. 2.24)
is topologically equivalent to the Baseline
network (Fig. 2.25b).

(b) The Flip network (Fig. 2.27) is constructed
using inverse perfect shuffle (Fig. 2.14b) for
interstage connections. Prove that the Flip
network is topologically equivalent to the
Baseline network.

" g7

{c} Based on the results obtained in (a) and (b),
prove the topological equivalence between
the Flip network and the Omega network.

Wi
A A
3:4 .'Oo'o\h-" !

R
e

-~

)
)
[

Fig. 2.27 A 16 x 16 Flip netwark (Courtesy of
Ken Batcher; reprinted from Proc. Int.
Conf. Parallel Processing, 1976)

Problem 2.16 Answer the following questions
for the k-ary n-cube network:

(a) How many nodes does the network contain?

(b) What is the network diameter?

{(c) What is the bisection bandwidth?

(d) What is the node degree!?

(¢} Explain the graph-theoretic relationship
among k-ary mn-cube networks and rings,
meshes, tori, binary n-cubes, and Omega
networks,

{f) Explain the difference between a conventional
torus and a folded torus.

{(g) Under the assumption of constant wire
bisection, why do low-dimensional networks
(tori) have lower latency and higher hot-spot
throughput than high-dimensional networks
{hypercubes)?

Problem 2.17 Read the paper on fat trees by
Leiserson, which appeared in JEEE Trans. Computers,

gg i

pp. 892-901, Oct. 1985. Answer the following
questions related to the organization and application
of fat trees:

(a} Explin the advantages of using binary fat
trees over conventional binary trees as a
multiprocessor interconnection network.

(b) A universal fat tree is defined as a fat tree of
n nodes with root capacity w, where P <w
< n ,and for each channel ¢, at level k of the
tree, the capacity is

¢ = min ([24], [w2%"1)

Prove that the capacities of a universal fat tree
grow exponentially as we go up the tree from
the leaves. The channel capacity is defined
here as the number of wires in a channel.

Problem 2.18 Read the paper on k-ary n-cube
networks by Dally, which appeared in IEEE Trans.
Computers, June 1990, pp. 775-785. Answer
the following questions related to the network
properties and applications as aVLS| communication
network:
(a) Prove that the bisection width B of a k-ary
n-cube with w-bit wide communication
channels is

B(k.n) = 2w-NK"2"! = 2wN/k

where N = k" is the network size.

(b) Prove that the hot-spot throughput of a k-ary
n-cube network with deterministic routing

Advanced Computer Architecture

is equal to the bandwidth of a single channel
w = k — 1, under the assumption of a constant
wire cost.

Problem 2.19 Network embedding is a technique
to implement a network A on a network B. Explain
how to perform the following network embeddings:

{(a) Embed a two-dimensional torus r X r on an
n-dimensional hypercube with N = 2" nodes
where r* = 2".

(b) Embed the largest ring on a CCC with
N = k x 2* nodes and k 2 3.

(c}) Embed a complete balanced binary tree with
maximum height on a mesh of r X r nodes.

Problem 2.20 Read the paper on hypernets
by Hwang and Ghaosh, which appeared in [EEE
Trans. Computers, Dec. 1989. Answer the following
questions related to the network properties and
applications of hypernets:

() Explain how hypernets integrate positive
features of hypercube and tree-based
topologies into one combined architecture.

(b) Prove that the average node degree of a
hypernet can be maintained essentially
constant when the network size is increased.

(c) Discuss the application potentials of hypernets
in terms of message routing complexity, cost-
effective support for global as well as localized
communication, /O capabilities, and fault
tolerance.

